
Ownership is Theft: Experiences Building an Embedded OS in Rust

Amit Levy†, Michael P Andersen‡, Bradford Campbell§, David Culler‡,
Prabal Dutta§, Branden Ghena§, Philip Levis† and Pat Pannuto§

†Stanford University ‡University of California, Berkeley §University of Michigan
{levya,pal}@stanford.edu {m.andersen,culler}@berkeley.edu {bradjc,prabal,brghena,ppannuto}@umich.edu

ABSTRACT
Rust, a new systems programming language, provides compile-time
memory safety checks to help eliminate runtime bugs that manifest
from improper memory management. This feature is advantageous
for operating system development, and especially for embedded
OS development, where recovery and debugging are particularly
challenging. However, embedded platforms are highly event-based,
and Rust’s memory safety mechanisms largely presume threads. In
our experience developing an operating system for embedded sys-
tems in Rust, we have found that Rust’s ownership model prevents
otherwise safe resource sharing common in the embedded domain,
conflicts with the reality of hardware resources, and hinders using
closures for programming asynchronously. We describe these expe-
riences and how they relate to memory safety as well as illustrate our
workarounds that preserve the safety guarantees to the largest extent
possible. In addition, we draw from our experience to propose a new
language extension to Rust that would enable it to provide better
memory safety tools for event-driven platforms.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Security

Keywords
Rust, Linear Types, Ownership, Embedded Operating Systems

1. INTRODUCTION
Safe languages promise to eliminate a large class of programming

errors at compile time. Safety is particularly appealing for an op-
erating system kernel. Safety makes buffer and integer overflows,
which constitute a significant fraction of kernel bugs [7], impossible.
Strongly typed languages can isolate different components of a sys-
tem from each other at a finer granularity than hardware protection
mechanisms, which impose a high context switching overhead when
used at a fine grain (e.g., per device driver [12]).

The benefits of language safety are especially attractive for an em-
bedded operating system kernel, for three reasons. First, embedded
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
PLOS’15, October 04-07 2015, Monterey, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3942-1/15/10 ...$15.00
DOI: http://dx.doi.org/10.1145/2818302.2818306.

systems often use processors and microcontrollers that lack hard-
ware protection mechanisms such as memory management units:
language safety can protect software when hardware cannot. Second,
embedded applications are less tolerant of crashes, as they cannot
rely on user intervention to recover from runtime errors (e.g., restart
the application). Third, debugging embedded kernels is especially
difficult because they often do not have logging features and require
physical access to attach a debugger. While safety does not prevent
logical errors or bugs, it does greatly protect an embedded kernel
from hard crashes.

Unfortunately, the downsides of additional features typical with
safe languages often outweigh these benefits for systems program-
ming. Garbage collection, for example, introduces nondeterministic
delays. Automatic memory allocators complicate common kernel
optimizations such as slab allocation [5].

Rust [2], a new, safe language designed for systems programming,
including operating system kernels, promises memory safety with
no runtime overhead. Rust differs from most safe languages in that
it maintains safety and speed without having a garbage collector.
It relies heavily on compile-time checks that detect data races and
unsafe memory accesses at no run-time overhead.

We have been using Rust to develop a new embedded operating
system for microcontrollers called Tock. In particular, Tock targets
embedded platforms with much less than a megabyte of memory—
for example, our development platform has 64KB of RAM. At first
examination, Rust seems perfectly suited for this task. Rust achieves
memory and type safety without garbage collection by using a
mechanism, derived from affine types and unique pointers, called
ownership. However, in our experience so far, ownership semantics
have introduced new and unexpected challenges developing our
operating system.

In our development efforts, we have encountered three problems
with using Rust to implement an embedded kernel. First, Rust’s
automatic memory management is not optimized for hardware re-
sources and device drivers that are always present in the system.
Second, Rust’s ownership model prevents resource sharing between
closures and other kernel code, due to unnecessary thread safety
concerns in our setting. Finally, although closures are desirable for
simplified event handling, their requirement for dynamic memory is
problematic for embedded systems.

We describe each of these problems, illustrating examples where
Rust issues occur. We have been able to mostly workaround these
issues. However, in many cases this came at the cost of incorporating
more of the operating system into the trusted computing base, which
is allowed to circumvent the type system.

To better enable Rust to support event-driven embedded plat-
forms, we explore a possible language feature we call execution
contexts. This feature would provide Rust with a valuable tool for al-
lowing safe memory sharing when underlying hardware constraints
or execution models can reliably prevent concurrency issues.

2. RUST
Rust offers two important features that make it attractive as a

language for writing a secure, embedded operating system. First, it
preserves type safety without relying on a runtime garbage collector
for memory management. Instead, Rust uses affine types [14] to
determine when memory can be freed at compile-time. Second, sim-
ilar to Modula-3 [6] and Haskell [13], Rust allows the programmer
to explicitly separate code which is strictly bound to the type syste
from code which may subvert it.

2.1 Memory Management with Ownership
Most safe languages achieve memory safety by using runtime

checks to determine when memory can safely be freed. Rust, instead,
avoids the runtime overhead by using the concept of ownership,
generally referred to as affine types in the literature [14].

Each value in Rust has a unique owner—namely, the variable to
which it is bound. When the owner of a value goes out of scope, the
value is freed. For example:

{
let x = 43;

}

Within the scope above, memory for the value 43 is allocated and
bound to the variable x. When the scope exits and x is no longer
accessible its memory is reclaimed.

Because there can only be a single owner, aliasing is disallowed.
Instead, values are either copied (if the type of the value implements
the Copy trait) or moved between variables. Once a value is moved,
it is no longer accessible from the original variable binding. For
example, the following code is not permissible:

{
let x = Foo::new();
let y = x;
println("{}", x);

}

Because Foo::new() has been moved from x to y, x is no
longer valid. Similarly, moving a value into a function by passing
it as an argument invalidates the original variable. As a result,
functions must explicitly hand ownership back to the caller:

fn bar(x: Foo) -> Foo {
// do something useful with ‘x‘
x // <- return x

}

let my_x = Foo;
let my_x = bar(my_x);

To simplify programming, Rust allows references to a value,
called borrows, without invalidating the original variable. Borrows
are created using an & and can be either mutable or immutable.
There are two main restrictions on borrows:

1. A value can only be mutably borrowed if there are no other
borrows of the value.

2. Borrows cannot outlive the value they borrow. This prevents
dangling pointer bugs.

This ownership model allows the compiler to provide two impor-
tant safety mechanisms. First, it allows the compiler to determine
when to free dynamically allocated memory from the stack or heap.
Memory bugs like double-free and use-after-free are impossible in
this model. Second, it eliminates many data races by preventing
concurrent access to resources by multiple threads.

In many systems, this ownership model works well. For example,
in a threaded network server, resources such as client requests are
logically isolated from each other and can be owned by a single

thread. When multiple threads need to share a resource, they can
pass ownership through channels. However, as we discuss in the rest
of this paper, it does not work well in systems that use non thread-
based concurrency models and when resources must be shared.

2.2 The unsafe Keyword
Rust has an explicit separation between trusted code, which can

circumvent the type system in certain ways, from untrusted code,
which is strictly bound to the type system. Specifically, trusted
code can use blocks wrapped in the unsafe to perform unsafe
operations (e.g. dereference a raw pointer) or call other unsafe
functions.

The unsafe keyword can be used in two ways. First, any block
of code can be wrapped in an unsafe block to allow it to perform op-
erations that might break the type system. For example, a hardware
abstraction layer can use this feature to expose a memory-mapped
I/O register as a normal Rust struct:
let mydevice : &mut IORegs = unsafe {
&mut *(0x200103F as *mut IORegs)

}

Second, functions can be annotated with unsafe which prevents
untrusted code from calling them. For example, the standard li-
brary’s transmute function casts its input into any other type of
the same size:
pub unsafe fn transmute<T,U>(e: T) -> U

Packages compiled with -F unsafe_code cannot use the
unsafe keyword, allowing systems builders to isolate trusted code
on a per package basis. An operating system fundamentally must
perform certain operations which violate the type system. For ex-
ample, hardware is often configured through memory mapped I/O
registers which must be cast into usable data structures from ar-
bitrary pointers. This mechanism allows the operating system to
separate between trusted modules which must, for example, address
hardware directly, and untrusted modules like device drivers which
should access hardware through a narrower interfaces. When devel-
oping a secure system, the challange lies in minimizing the amount
of code that uses unsafe language features.

3. CHALLENGES
Resource constrained microcontrollers face challenges in terms

of energy use, memory availability, and execution time that uniquely
shape the operating system design.

In particular, embedded operating systems must be more reliable
and use less memory than their general-purpose counterparts. For
example, the platform which Tock targets has only 64KB of memory.
Most embedded platforms do not typically exceed 256KB of RAM,
and most have significantly less. As a result, embedded operating
systems avoid memory intensive mechanisms like threading, and
instead opt for event driven concurrency [10].

Similarly, microcontrollers generally do not have hardware mem-
ory management units and cannot support virtual memory. As a
result, they avoid dynamic memory mechanisms both because swap-
ping memory to gracefully degrade upon memory exhaustion is not
possible, and because dynamic allocations may be explicitly prohib-
ited (e.g. for MISRA C [11] compliance). Conversely, average case
performance is not generally a bottleneck, so embedded operating
systems can trade CPU cycles to save memory or provide safety.

Reliability is paramount for embedded operating systems due to
the difficulty of debugging and lack of human interaction. Lever-
aging the compile time guarantees of a safe language to isolate
kernel extensions can help make the operating system more reli-
able without restricting flexibility. The SPIN [4] operating system,

for example, was written in Modula-3. SPIN showed how a safe
language provides safe, fast access to protected kernel resources.
This safe access, in turn, enables applications to safely extend the
kernel with new features and services. Having similar safe extensi-
bility is extremely valuable in an embedded kernel, because a kernel
must be able to adapt to many custom hardware configurations and
applications.

Implementing an operating system for an embedded platform in
Rust, which is nominally well suited for these limitations as it is a
low-level language that provides memory safety, has raised three
main issues: the tension between ownership and cyclic dependencies
in an operating system, capturing state in callback closures, and
statically allocating closure memory.

3.1 Resource Ownership
Rust’s memory ownership model, while providing useful memory-

management tools, can conflict with common scenarios that arise
in operating systems. First, many operating system resources are
not dynamically allocated. For example, hardware peripherals are
always present, and device drivers are allocated once at system
initialization. As these resources are never freed, the ownership
mechanisms do not need to manage the lifetimes of these resources.

Second, resources must often be shared between multiple logical
units. For example, consider a simple networked application where
a reference to the networking stack must be shared between a UDP
interface (to allow applications to send packets) and the underlying
radio driver (to allow the radio hardware to notify that packets have
been received).

// Both UDP and RadioDriver need a reference to the
// networking stack.

impl UDP {
// Called from an application to send a packet. Must be able
// to tell the networking stack to transmit a new packet.
fn send(&mut self, packet) {

self.network_stack.outgoing(packet);
}

}

impl RadioDriver {
// Called from the main loop when a packet arrives.
// on_receive needs a reference to network_stack
// to notify it of a received packet.
fn on_receive(&mut self, packet) {

self.network_stack.incoming(packet);
}

}

In order to avoid possible data races, Rust’s ownership model does
not allow the UDP interface and RadioDriver to keep references
to the networking stack simultaneously. While hardware interrupts
are asynchronous, and therefore run concurrently with other kernel
code, in our operating system interrupt handlers enqueue tasks to
be run in the main scheduler loop, which is single-threaded. As a
result, on_receive and send can never run concurrently and no
data race is possible.

We overcome both issues by declaring most resources as static
variables and borrowing them with ’static lifetime. In Rust,
borrows with ’static lifetimes are treated specially: only unsafe
code can create such a borrow, but once created they can be re-
borrowed mutably any number of times. Intuitively, the ’static
lifetime points to the “original sin” of borrowing a static variable
unsafely. Therefore, none of the safety semantics that apply to
normal borrows are applied to those with static lifetimes.

Being able to mutably borrow static variables multiple times
means our operating system can allow multiple drivers to reference

hardware resources or each other. However, doing so means we lose
the ability to detect real data races at compile time, for example,
if the kernel passes a shared resource to an interrupt handler that
may run concurrently. Instead, we resort to an overly conservative
convention in which interrupt handlers perform no work except
posting to the main scheduler’s task queue. An ideal mechanism
would, instead, allow for shared state between components that will
never run concurrently, but disallow sharing when they may.

3.2 Callbacks through Closures
Embedded operating systems are largely event-driven: most com-

putation happens in response to events—e.g. a timer firing, an
I/O operation completing, or an external interrupt triggering. The
standard C approach to event-driven code is to pass a callback func-
tion pointer as a parameter to an asynchronous call. When the
asynchronous operation completes, it invokes the callback. There
are two problems with this approach. First, a linear sequence of
asynchronous operations does not appear in a linear piece of code.
Instead, it is spread across a series of many small functions. Sec-
ond, the programmer must manually pass state between callers and
callbacks, e.g., by using “stack ripping” [3].

Event-driven application languages, such as JavaScript, help solve
this problem by allowing callbacks to be specified as closures at the
call site:

var count = 0;
setInterval(function() {
console.log(count + " clicks");

}, 2000);
onClick(function() {
count += 1;

});

The ability write to the callback at the point it is registered makes
reading asynchronous code easier. Furthermore, the ability to close
over variables from the caller makes resource management simpler.

However, this programming approach requires closure to capture
shared state to avoid stack ripping. In the example above, when the
call to onClick returns, there are three valid handles to count:
one in the caller, and one in each of the closures. In the case of
JavaScript, this is safe: programs are single-threaded, so the callback
cannot access the closure while the calling context executes.

Rust has closures, but does not assume a particular threading
model, so its ownership system prohibits a similar construction. For
the closure to capture a variable, it must either take ownership of it,
preventing the caller from accessing it, or complete before returning
to the caller.

let mut x = 0;
setInterval(move || { // "||" indicates a closure in Rust
println!("{} clicks", x);

}, 2000);
// x is no longer valid in this context, and we
// cannot create the closure for onClick

In the context of an embedded OS, this can be critically limiting.
In practice, this leads software to take one of two approaches, neither
desirable. The first carefully partitions state between a caller and
callbacks. For example, instead of using a single, intuitive variable
for the LEDs on a device that allows all of the lights to be controlled:

// No other code can access LEDs
setTimeout(|| {
leds.activityToggle();

}, 2000);

the ownership concerns force the code to partition the LEDs so that
access to each one is stored in separate variables.

setTimeout(|| {
activityLed.toggle();

}, 2000);

Unfortunately, the end result of partitioning is tiny, fine-grained
interfaces that are very hard to manage. A callback that needs
to toggle multiple LEDs, for example, needs to capture each one
separately in the closure.

The second approach is to avoid compile time ownership checks
and rely on run-time mechanisms. While this may work for some
applications, it defeats the purpose of leveraging compile-time safety
checks for an embedded operating system.

3.3 Closure Memory Management
Since closures capture dynamic variables, and several instances

of a closure may be outstanding concurrently, closures are typically
allocated dynamically. However, embedded operating systems often
do not, or cannot support dynamic memory allocation.

On the other hand, several common asynchronous patterns do not
require closures to be re-entrant, and the memory for the closure
can instead be statically allocated at the call site. For example, in
TinyOS [10], a callback is either posted or not—posting it multiple
times results in a single invocation. In Rust, it makes sense to
express this with closures:

fn set_lcd<F: Fn()>(text: [u8; 256], on_done: &F) {
spi_write(START, to_static(|| {

spi_write(text, onDone);
})

);
}

The set_lcd function writes a START sequence to the SPI bus
connected to an LCD screen, followed by the text to display on the
screen. Multiple outstanding closures will never exist as another
SPI command cannot be executed until the current command is
completed. The goal of to_static in the example above is to
copy captured values into a statically allocated memory buffer (in
this case the text buffer and a pointer to the on_done callback).
But how would we implement to_static?

In Rust, each closure has a unique type. Therefore, the following
to_static signature would result in a separate instantiation of
the function for each closure passed to it:

fn to_static<F: Fn()>(closure: F) -> &F

In principal, this would allow us to statically allocate a buffer
sized for each particular closure. Unfortunately, there is no size_of
keyword in Rust, and static initialization cannot invoke functions—
in this case the function size_of<T>() -> usize provided
by the Rust core library. In comparions, it is possible to write a
version of to_static in C++11, which has lambdas with similar
semantics to Rust closures, as well as a size_of keyword that is
resolved at compile-time.

While the syntactic additions required to support statically allo-
cating closures in Rust would be small, they would have a profound
difference for engineering resource constrained systems. In our
embedded operating system, we have had to abandon closures as a
callback mechanism, in favor of more cumbersome, and less com-
prehensible styles such as statically binding callbacks and manual
stack ripping.

4. PROPOSED LANGUAGE MECHANISM:
EXECUTION CONTEXTS

The core issue underlying hardware resource sharing and callback
closures is that Rust does not allow mutable aliasing. This helps

prevent common bugs such as data races between threads, iterator
invalidation etc. However, under certain constraints, for example,
if all aliases are used fromthe same thread, mutable aliases might
be perfectly safe. This is the common case for embedded systems,
which typically have only one primary execution thread occasionally
punctuated by interrupt handlers. Currently, however, Rust’s type
system is not rich enough to express constraints on thread execution.

We propose an extension to the Rust type-system, called execution
contexts, that reflects the thread of a value’s owner in its type. We
argue that this type information could be used to allow multiple
borrows of a value from within the same thread, but not across
threads. Execution contexts are a compile-time only mechanism
that allow the compiler to identify safe operations.

To define an execution context, type parameters are prefixed with
the hash character (#), akin to current lifetime annotations (’). A
value’s execution context is determined by its owner. When a value
is moved between threads (e.g. through a channel), it takes on
the execution context of its new owner. Borrows have a borrowed
execution context (in addition to their own execution context as
values) that reflects the execution context of the value they borrow.
Finally, execution contexts can be instantiated as type parameters
in functions and trait implementations. For example, closure traits
(e.g., FnMut, FnOnce) have an execution context parameter that
determines the context in which they run. Table 1 summarizes the
different types that may include an execution context. While every
reference has an execution context, like lifetimes they can be elided
in most cases.

Value #a val
Borrow & #a var

Closure Trait FnOnce<#a>
Function Parameter fn f<#a>(var: & #a T) -> #a ()

Table 1: Execution context usage. An execution context a is repre-
sented in the type system as #a. Execution contexts can be attached
to values, borrows, and closure traits, and can also be used as pa-
rameters in functions.

4.1 Semantics of Execution Contexts
The goal of execution contexts is to allow programs to mutably

borrow values multiple times as long as those borrows are never
shared between threads. Execution contexts allow the compiler to
distinguish such sharing from actual errors using only local analysis.

By definition, the whole execution of a scope must run in one
execution context. Thus every value owned in that scope must have
the same execution context. Because callers must own the return
value of their callees, values in a parent and a child scope must have
the same execution context. Therefore, a thread (a single call-graph
with no internal concurrency) maps to an execution context.

Entry functions (e.g. main or extern functions such as signal or
hardware interrupt handlers) begin a new execution context. Func-
tions can also “create” new execution contexts by forcing closures to
run in a different execution context than the return value of the func-
tion. For example, the spawn function from the standard library,
which runs its argument in a new POSIX thread:

fn spawn<#a, #b, F>(func: F) -> #a ()
where F: FnOnce() + #b;

// Does not compile: Cannot borrow across contexts
let x = 0;
spawn(|| { println!("In thread: {}", x); });

// Does compile: Can take sole ownership with move

let x = 0;
spawn(move || { println!("In thread: {}", x); });

The return value of spawn has execution context #a, meaning
the caller of spawn has that execution context. Conversely, the
argument to spawn is a closure that runs with execution context #b.
Because #a might not equal #b, the closure cannot borrow values
from the caller, protecting against possible race conditions.

Borrowed execution contexts reflect the original value’s execution
context and do not change when the borrow is moved. Furthermore,
because a value cannot be moved while there are borrows of it, a
borrowed execution context always matches the execution context
of the original value. While borrows, themselves, can be moved
between threads, they can only be dereferenced from an execution
context that matches their borrowed execution context. Importantly,
this allows borrows to be stored as fields in data structures that might
be moved between threads, while preserving thread safety.

Execution contexts permit code that was always safe but previ-
ously invalid in Rust. Consider a ballot box that stores votes as a list
of closures to run when votes are tallied:1

struct BallotBox<’a, #a> {
votes: LinkedList<HeapPtr<FnMut<#a>() + ’a>>,
yays: #a u32

}

impl<’a, ’b: ’a, #a> BallotBox<’a, #a> {
pub fn vote_yay(&’b #a mut self) -> #a () {

votes.push_back(
HeapPtr::alloc(|| {self.yays += 1})

)
}
pub fn tally(& #a mut self) -> #a u32 {
for f in self.votes.iter_mut() {

f();
}
return self.yays;

}
}

The stored closures each hold a mutable reference to self with the
same execution context (#a) as constrained by the type parameter
initialization from the impl statement. Since the closures are run
to completion in the same thread, these multiple borrows do not
introduce race conditions.

In some cases, it is necessary to permit multiple execution con-
texts to access the same values. Figure 1 shows how an interrupt
handler, which executes in a unique handler context (#h), can post a
task to a shared queue that the scheduler, executing the main kernel
context (#k), can dequeue and run. This example introduces the last
new construct: the #any execution context. Any execution context
may access a value with the #any. Accesses must be serialized
internally, for example, using mutexes or atomic sections (disabling
interrupts) as appropriate.

4.2 Limitations
Multi-threaded execution is not the only issue that arises from

mutable aliasing. For example, internal references union types may
break the type system if different types may point to overlapping
memory [1]. Similarly, dynamically sized data structures such as
vectors must not free data that may still be referenced by a different
alias. Therefore, supporting mutable aliasing in Rust might require
subtle changes to the standard library. While we believe execution
contexts can, in general, be safe, we have not fully explored their
implications on the wider Rust ecosystem.
1We use HeapPtr types to allocate heap memory. Readers familiar
with Rust should read these as Rust’s Box type.

// InterruptQueue is shared between threads. It is marked with
// the #any context to signify that it can be mutably borrowed
// from any thread. The enqueue and dequeue methods must
// be implemented using atomic blocks for safety
let interrupt_queue: #any InterruptQueue =

InterruptQueue::new();

struct ButtonDriver<#k> {
count: #k usize

}

impl<#k> ButtonDriver<#k> {
pub fn handle_interrupt(& #k mut self) {

// Because self is borrowed with thread #k, we know
// the caller is in the same thread that owns self.count,
// and are able to borrow it mutably. In our case, this is
// because ‘handle_interrupt’ was called from main
self.count += 1;

}
pub fn RAW_INTERRUPT<#h>(& #h mut self) {

// Cannot borrow self.counter because it belongs to
// context #k and not #h. Instead self is enqueued to
// be handled from the main thread
interrupt_queue.enqueue(self);

}
}

fn main() {
let button_driver = ButtonDriver{count: 0};
loop {
interrupt_queue.dequeue().handle_interrupt();

}
}

Figure 1: Complete example of execution contexts. An
interrupt_queue is shared between a lightweight “top-half”
interrupt handler that runs in the interrupt context and the (naïve)
scheduler that executes the majority of the interrupt logic in the
“bottom-half” interrupt handler in the main kernel execution context.

5. RELATED WORK AND CONCLUSIONS
Several previous operating systems have used language features

to guarantee the safety of kernel components. SPIN [4] allows appli-
cations to download extensions written in Modula-3 into the kernel,
and uses the language to sandbox the extensions. Singularity [9]
requires that applications as well as the entire kernel are written in a
managed language (C#) and relies entirely on a language sandbox
(rather than hardware protection) to isolate applications. Unlike
Singularity, Tock cannot rely on a garbage collected language due
to the constraints of embedded systems. TinyOS [10] detects data
races between threads at compile time and requires the programmer
to wrap accesses to shared data in atomic blocks that temporarily
disable interrupts. However, TinyOS uses a superset of nesC (a C
dialect) which provides no memory or type safety.

Clarke and Wrigstad [8] point out a similar issue arising from
borrowing unique types in a closed loop. They propose the notion
of external uniqueness, which allows an object subgraph to contain
cyclic internal references while having a unique external owner.
Our proposal for execution contexts in Rust is similar but considers
execution threads, instead of object graphs, as the unit of isolation.

Rust’s low-level interface, safe memory management, and large
community make it a particularly good fit for operating system
development. If future language development can address the chal-
lenges we have demonstrated, Rust should be well positioned to
support the next generation of correct embedded operating systems.

6. REFERENCES
[1] Rust issue: "borrowck is unsound in the presence of &’static

muts". https://github.com/rust-lang/rust/
issues/27616.

[2] The Rust programming language.
http://www.rust-lang.org.

[3] ADYA, A., HOWELL, J., THEIMER, M., BOLOSKY, W. J.,
AND DOUCEUR, J. R. Cooperative task management without
manual stack management. In Proceedings of the General
Track of the Annual Conference on USENIX Annual Technical
Conference (Berkeley, CA, USA, 2002), ATEC ’02, USENIX
Association, pp. 289–302.

[4] BERSHAD, B. N., CHAMBERS, C., EGGERS, S., MAEDA,
C., MCNAMEE, D., PARDYAK, P., SAVAGE, S., AND SIRER,
E. G. Spin–an extensible microkernel for application-specific
operating system services. ACM SIGOPS Operating Systems
Review 29, 1 (1995), 74–77.

[5] BONWICK, J., ET AL. The slab allocator: An object-caching
kernel memory allocator. In USENIX summer (1994), vol. 16,
Boston, MA, USA.

[6] CARDELLI, L., DONAHUE, J., JORDAN, M., KALSOW, B.,
AND NELSON, G. The modula– type system. In Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (New York, NY, USA, 1989),
POPL ’89, ACM, pp. 202–212.

[7] CHEN, H., MAO, Y., WANG, X., ZHOU, D., ZELDOVICH,
N., AND KAASHOEK, M. F. Linux kernel vulnerabilities:
State-of-the-art defenses and open problems. In Proceedings
of the Second Asia-Pacific Workshop on Systems (2011),
ACM, p. 5.

[8] CLARKE, D., AND WRIGSTAD, T. External uniqueness is
unique enough. ECOOP 2003–Object-Oriented Programming
(2003), 59–67.

[9] HUNT, G. C., AND LARUS, J. R. Singularity: Rethinking the
software stack. ACM SIGOPS Operating Systems Review 41,
2 (April 2007), 37–49.

[10] LEVIS, P., MADDEN, S., POLASTRE, J., SZEWCZYK, R.,
WHITEHOUSE, K., WOO, A., GAY, D., HILL, J., WELSH,
M., BREWER, E., AND CULLER, D. TinyOS: An operating
system for sensor networks. In Ambient Intelligence,
W. Weber, J. Rabaey, and E. Aarts, Eds. Springer Berlin
Heidelberg, 2005, pp. 115–148.

[11] MOTOR INDUSTRY SOFTWARE RELIABILITY
ASSOCIATION, ET AL. MISRA-C: 2012: Guidelines for the
Use of the C Language in Critical Systems. MIRA, 2013.

[12] SWIFT, M. M., MARTIN, S., LEVY, H. M., AND EGGERS,
S. J. Nooks: An architecture for reliable device drivers. In
Proceedings of the 10th workshop on ACM SIGOPS European
workshop (2002), ACM, pp. 102–107.

[13] TEREI, D., MARLOW, S., PEYTON JONES, S., AND
MAZIÈRES, D. Safe haskell. In Proceedings of the 2012
Haskell Symposium (New York, NY, USA, 2012), Haskell ’12,
ACM, pp. 137–148.

[14] TOV, J. A., AND PUCELLA, R. Practical affine types. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (New
York, NY, USA, 2011), POPL ’11, ACM, pp. 447–458.

https://github.com/rust-lang/rust/issues/27616
https://github.com/rust-lang/rust/issues/27616
http://www.rust-lang.org

	Introduction
	Rust
	Memory Management with Ownership
	The unsafe Keyword

	Challenges
	Resource Ownership
	Callbacks through Closures
	Closure Memory Management

	Proposed Language Mechanism: Execution Contexts
	Semantics of Execution Contexts
	Limitations

	Related Work and Conclusions
	References

